A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces.

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On weighted critical imbeddings of Sobolev spaces

Our concern in this paper lies with two aspects of weighted exponential spaces connected with their role of target spaces for critical imbeddings of Sobolev spaces. We characterize weights which do not change an exponential space up to equivalence of norms. Specifically, we first prove that Lexp tα(χB) = Lexp tα(ρ) if and only if ρq ∈ Lq with some q > 1. Second, we consider the Sobolev space W ...

متن کامل

Dimension-free imbeddings of Sobolev spaces

We prove dimension-free imbedding theorems for Sobolev spaces using extrapolation means and the Gross logarithmic inequality.

متن کامل

Nonlinear eigenvalue problems in Sobolev spaces with variable exponent

Abstract. We study the boundary value problem −div((|∇u|1 + |∇u|2)∇u) = f(x, u) in Ω, u = 0 on ∂Ω, where Ω is a smooth bounded domain in R . We focus on the cases when f±(x, u) = ±(−λ|u| u+ |u|u), where m(x) := max{p1(x), p2(x)} < q(x) < N ·m(x) N−m(x) for any x ∈ Ω. In the first case we show the existence of infinitely many weak solutions for any λ > 0. In the second case we prove that if λ is...

متن کامل

Extrapolation of Reduced Sobolev Imbeddings

We consider fractional Sobolev spaces with dominating mixed derivatives and prove generalizations of Trudinger’s limiting imbedding theorem.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Revista Matemática Complutense

سال: 2004

ISSN: 1988-2807,1139-1138

DOI: 10.5209/rev_rema.2004.v17.n1.16790